Compressed air is led through the inlet of the dryer (1) and across the prefilter (2).
At this stage, the air is cleaned from particles and condensate.
The condensate is removed via the membrane condensate drain (3).
Via the lower shuttle valve (4), the air is led into desiccant cartridges (5), in which the air is dried down to the required dewpoint.
Via the upper shuttle valve (6), the air gets into an afterfilter (7), in which particles from the desiccant are retained.
Via the outlet (8), the clean and dry air is lead into the compressed air network to the point of use.
While one vessel with desiccant cartridge is in the drying phase (adsorption), the other cartridge is being dried again (regeneration).
A partial stream of dried air is expanded via an orifice and lead across the desiccant cartridge for regeneration and via a solenoid valve and a silencer system to the atmosphere.

Ultrapac 2000 Standard

Compressed air is led through the inlet of the dryer (1) and across the prefilter (2).
At this stage, the air is cleaned from particles and condensate.
The condensate is removed via the membrane condensate drain (3).
Via the lower shuttle valve (4), the air is led into desiccant cartridges (5), in which the air is dried down to the required dewpoint.
Via the upper shuttle valve (6), the air gets into an afterfilter (7), in which particles from the desiccant are retained.
Via the outlet (8), the clean and dry air is lead into the compressed air network to the point of use.

Technical Data Sheet

<table>
<thead>
<tr>
<th>Ultrapac 2000</th>
<th>Volume flow in m³/h (1 bar, 20°C)*</th>
<th>Regeneration air losses (average) m³/h (1 bar, 20°C)</th>
<th>Volume flow out (min.) m³/h (1 bar, 20°C)</th>
<th>Pressure loss initial mbar</th>
<th>Prefilter</th>
<th>Afterfilter</th>
<th>amount of cartridges</th>
</tr>
</thead>
<tbody>
<tr>
<td>0005</td>
<td>5</td>
<td>9.85</td>
<td>65</td>
<td>02/05</td>
<td>02/05</td>
<td>02/05</td>
<td>2</td>
</tr>
<tr>
<td>0010</td>
<td>10</td>
<td>1.70</td>
<td>95</td>
<td>03/05</td>
<td>03/05</td>
<td>03/05</td>
<td>4</td>
</tr>
<tr>
<td>0015</td>
<td>15</td>
<td>2.55</td>
<td>115</td>
<td>04/10</td>
<td>04/10</td>
<td>04/10</td>
<td>6</td>
</tr>
<tr>
<td>0025</td>
<td>25</td>
<td>4.25</td>
<td>250</td>
<td>06/10</td>
<td>06/10</td>
<td>06/10</td>
<td>10</td>
</tr>
</tbody>
</table>

* Related to 1 bar (abs) and 20 °C at inlet of compressor and 7 bar (g) and 35 °C inlet temperature.
Ultrapac 2000 Standard Mini / Superplus Mini

Features Ultrapac 2000 series:
- Purification package complete with pre-, afterfilter and condensate drain.
- Desiccant in cartridges
- Compact, space saving design
- Component exchange display
- Unique Multifunction Block

Benefits:
- Turnkey System, no additional installation cost; all components from one hand, therefore perfect technical match.
- Easy storage, transport and installation; optimum fixation of desiccant; no risk of fluidizing of desiccant.
- Installation in smallest spaces, possible also as retrofit.
- High operating safety, due to calculation of optimum exchange point for filter elements and desiccant cartridges.
- All moving parts and all electronic components integrated in a function block, therefore easy and efficient maintenance.

Features Ultrapac 2000 Superplus:
- Intermittent operation
- Throttle package
- Load control
- Self-Diagnosis-System
- Text Display
- Info-Channel
- Economizer-Function

Benefits:
- Link between dryer and compressor possible on central applications, therefore saving of regeneration air.
- By means of enclosed throttle package and automatic adaptation of the control at inputted operating conditions, an optimal regeneration air consumption and a maximally possible flow according to the correction factor table within the total range of 4-16 bar (g) and 25-50°C is reached.
- Adjustment of adsorption cycles to the actual inlet water load, therefore saving of regeneration air and reduction of operating cost.
- Sensor-controlled monitoring of regeneration air flow, therefore without-gap-monitoring of dryer functions and of system pressure.
- Display of all operating status, of fault indication and maintenance intervals in clear text messages.
- Online calculation of optimum exchange point of filter elements by continuous evaluation of energy cost versus cost of replacement filter element.

Sizing:

<table>
<thead>
<tr>
<th>f</th>
<th>4 bar(g)</th>
<th>5 bar(g)</th>
<th>6 bar(g)</th>
<th>7 bar(g)</th>
<th>8 bar(g)</th>
<th>9 bar(g)</th>
<th>10 bar(g)</th>
<th>11 bar(g)</th>
<th>12 bar(g)</th>
<th>13 bar(g)</th>
<th>14 bar(g)</th>
<th>15 bar(g)</th>
<th>16 bar(g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25°C</td>
<td>0.69</td>
<td>0.82</td>
<td>0.96</td>
<td>1.10</td>
<td>1.24</td>
<td>1.38</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
</tr>
<tr>
<td>30°C</td>
<td>0.69</td>
<td>0.82</td>
<td>0.96</td>
<td>1.10</td>
<td>1.24</td>
<td>1.38</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
</tr>
<tr>
<td>35°C</td>
<td>0.63</td>
<td>0.75</td>
<td>0.88</td>
<td>1.00</td>
<td>1.13</td>
<td>1.26</td>
<td>1.38</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
</tr>
<tr>
<td>40°C</td>
<td>0.48</td>
<td>0.58</td>
<td>0.68</td>
<td>0.77</td>
<td>0.87</td>
<td>0.96</td>
<td>1.06</td>
<td>1.16</td>
<td>1.25</td>
<td>1.35</td>
<td>1.45</td>
<td>1.50</td>
<td>1.50</td>
</tr>
<tr>
<td>45°C</td>
<td>0.38</td>
<td>0.45</td>
<td>0.53</td>
<td>0.60</td>
<td>0.68</td>
<td>0.75</td>
<td>0.83</td>
<td>0.90</td>
<td>0.98</td>
<td>1.05</td>
<td>1.13</td>
<td>1.20</td>
<td>1.28</td>
</tr>
<tr>
<td>50°C</td>
<td>0.30</td>
<td>0.36</td>
<td>0.42</td>
<td>0.48</td>
<td>0.54</td>
<td>0.60</td>
<td>0.66</td>
<td>0.72</td>
<td>0.78</td>
<td>0.84</td>
<td>0.90</td>
<td>0.96</td>
<td>1.02</td>
</tr>
</tbody>
</table>

Example: \(V_{\text{nom}} = 22 \text{Nm}^3/\text{h}, \text{Inlet temperature} = 30°\text{C}, \text{Operating pressure} = 10 \text{bar (g)} \)

\[
\dot{V}_{\text{corr}} = \frac{\dot{V}_{\text{nom}}}{f} = \frac{22 \text{ m}^3/\text{h}}{1.50} = 14.66 \text{ m}^3/\text{h}.
\]

Calculated dryer size: Ultrapac 2000, type 0015.

Product description:
- **Ultrapac 2000 Standard and Superplus:** Complete purification package, consisting of heatless adsorption dryer which works on the basis of pressure swing adsorption, with integrated pre- and after filter and electronic condensate drain.

Medium:
- Compressed air/ nitrogen

Pressure dewpoint
- –40 °C at 100% load, –70 °C at 70% of rated flow and a maximum inlet temperature of 35 °C

Operation pressure:
- min. 4 bar (g), max. 16 bar (g)

Medium temperature:
- min. 5 °C, max. 50 °C

Ambient temperature:
- min. 4 °C, max. 50 °C

Compressed air consumption:
- 17% of the rated flow, in average

Power supply:
- 230 V/50 - 60 Hz AC;
- 110 V/50 - 60 Hz AC
- 24 V DC; 24 V AC on request

Power consumption:
- approx. 4 W

Materials:
- Extruded Profiles
- Anodized Aluminum
- Adsorber and Filter lids
- Glass fiber enforced polyamide

Declaration of conformity:
- acc. to 73/23/EC
- 97/23/EC
Ultrapac 2000 Standard Mini
Ultrapac 2000 Superplus Mini

<table>
<thead>
<tr>
<th>Type</th>
<th>G "</th>
<th>A mm</th>
<th>B mm</th>
<th>C mm</th>
<th>D mm</th>
<th>E mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0005</td>
<td>G 1/8</td>
<td>300</td>
<td>121</td>
<td>343</td>
<td>84</td>
<td>273</td>
</tr>
<tr>
<td>0010</td>
<td>G 1/6</td>
<td>300</td>
<td>121</td>
<td>591</td>
<td>208</td>
<td>397</td>
</tr>
<tr>
<td>0015</td>
<td>G 1/4</td>
<td>300</td>
<td>121</td>
<td>853</td>
<td>339</td>
<td>528</td>
</tr>
<tr>
<td>0025</td>
<td>G 1/2</td>
<td>300</td>
<td>121</td>
<td>1377</td>
<td>601</td>
<td>789</td>
</tr>
</tbody>
</table>